Posts Tagged ‘DAS (distributed antenna system)’

Wireless Case Studies: Cellular Repeater and DAS

Friday, February 7th, 2014

Gyver Networks recently designed and installed a cellular bi-directional amplifier (BDA) and distributed antenna system (DAS) for an internationally renowned preparatory and boarding school in Massachusetts.

BDA Challenge: Faculty, students, and visitors were unable to access any cellular voice or data services at one of this historic campus’ sports complexes; 3G and 4G cellular reception at the suburban Boston location were virtually nonexistent.

Of particular concern to the school was the fact that the safety of its student-athletes would be jeopardized in the event of a serious injury, with precious minutes lost as faculty were forced to scramble to find the nearest landline – or leave the building altogether in search of cellular signal – to contact first responders.

Additionally, since internal communications between management and facilities personnel around the campus took place via mobile phone, lack of cellular signal at the sports complex required staff to physically leave the site just to find adequate reception.

Resolution: Gyver Networks engineers performed a cellular site survey of selected carriers throughout the complex to acquire a precise snapshot of the RF environment. After selecting the optimal donor tower signal for each cell carrier, Gyver then engineered and installed a distributed antenna system (DAS) to retransmit the amplified signal put out by the bi-directional amplifier (BDA) inside the building.

The high-gain, dual-band BDA chosen for the system offered scalability across selected cellular and PCS bands, as well as the flexibility to reconfigure band settings on an as-needed basis, providing enhancement capabilities for all major carriers now and in the future.

Every objective set forth by the school’s IT department has been satisfied with the deployment of this cellular repeater and DAS: All areas of the athletic complex now enjoy full 3G and 4G voice and data connectivity; safety and liability concerns have been mitigated; and campus personnel are able to maintain mobile communications regardless of where they are in the complex.

NFL lagging on stadium Wi-Fi

Tuesday, September 3rd, 2013

http://i2.cdn.turner.com/cnn/dam/assets/130902121717-levis-stadium-horizontal-gallery.jpg

The consumption of NFL football, America’s most popular sport, is built on game-day traditions.

This week fans will dress head-to-toe in team colors and try out new tailgate recipes in parking lots before filing into 16 NFL stadiums to cheer on their team — which, thanks to the league’s parity, will likely still be in the playoff hunt come December.

But a game-day ritual of the digital age — tracking scores, highlights and social-media chatter on a mobile device — isn’t possible inside many NFL venues because the crush of fans with smartphones can overload cellular networks.

The improved home-viewing experience — high-def TV, watching multiple games at once, real-time fantasy-football updates and interaction via social media — has left some NFL stadiums scrambling to catch up. It’s one of the reasons why, before rebounding last year, the NFL lost attendance between 2008 and 2011, forcing the league to alter television-blackout rules.

In May 2012, NFL Commissioner Roger Goodell announced an initiative to outfit all 31 NFL stadiums with Wi-Fi. But with the start of the 2013 regular season just days away, less than half of the NFL’s venues are Wi-Fi enabled and no stadiums have launched new Wi-Fi systems this year.

Part of the reason for the delay is some stadium operators are waiting for the next generation of increased Wi-Fi speed before installing networks, said Paul Kapustka, editor in chief for Mobile Sports Report.

Another reason, Kapustka said, is that the cost of installing Wi-Fi will come out of the pockets of venue owners and operators who have traditionally not needed to invest in such costly projects. Instead, they receive public money to help build stadiums and television money for the right to broadcast games.

“Stadium owners and operators need to get their hands on the fact that they need to put in Wi-Fi like they need to put in plumbing,” Kapustka said.

Brian Lafemina, the NFL’s vice president of club business development, said the league is still searching for a telecommunications partner that can help tackle challenges of stadium location, design and tens of thousands of fans all trying to access the network at the same time.

“Yes, we are working on it as hard as we can,” he said. “But the technology just isn’t where it needs to be to deliver what we want to deliver.”

The league is unveiling a variety of technological enhancements at stadiums in 2013, including cameras in locker rooms, massive video boards that will show replays of every play, a “fantasy football lounge” with sleek technological amenities, the ability to listen to audio of other games from inside the stadium, team specific fantasy games and free access to the league’s NFL Red Zone cable channel for season ticket holders.

Lafemina emphasized the league’s role as a storyteller and said it is striving to use technology to provide fans in stadiums with unique content.

“The most important people in that stadium are the 70,000 paying customers,” he said.

Jonathan Kraft, president of the New England Patriots and co-chair of the NFL’s digital media committee, told CNN Money in January that he hopes to have all stadiums equipped with Wi-Fi for the start of the 2015 season.

The Patriots helped lead the way last year by offering fans free Wi-Fi throughout Gillette Stadium in Foxboro, Massachusetts. The network was built by New Hampshire-based Enterasys Networks.

“We certainly encourage that any club would invest the way they have,” said Lafemina.

Eleven other stadiums currently have Wi-Fi capability: MetLife Stadium in northern New Jersey, the Georgia Dome in Atlanta, Lucas Oil Stadium in Indianapolis, Raymond James Stadium in Tampa, the Mercedes-Benz Superdome in New Orleans, Bank of America Stadium in Charlotte, Sun Life Stadium in Miami, AT&T Stadium in suburban Dallas, University of Phoenix Stadium in suburban Phoenix, Ford Field in Detroit and Soldier Field in Chicago.

The 20 other stadiums have Wi-Fi in certain areas, but mostly operate on wireless service provided by Verizon and/or AT&T. Many of these venues have installed distributed antenna systems (DAS) to increase wireless connectivity while they seek answers to the challenges of enabling stadiums with Wi-Fi.

DAS connects cellular antennas to a common source, allowing wireless access in large buildings like stadiums.

Mobile Sports Report published its inaugural State of the Stadium Technology Survey this year, based on responses from more than 50 NFL, MLB, NBA, NHL, university, pro soccer, pro golf and car racing sites. The survey concluded DAS is currently more popular at venues because it boosts connectivity to mobile devices while dividing costs between carriers and the facility.

Cleveland Browns fans will benefit from a new DAS tower, installed by Verizon, and an upgraded AT&T tower this year at FirstEnergy Stadium, Browns President Alec Scheiner said the improved technology will serve as a test case for whether to install Wi-Fi in the future.

“If you are a consumer or a fan, you really just care about being able to get on your mobile device, and that’s what we’re trying to tackle,” he said during a July press conference.

Kapustka said DAS is a quick fix and is not a long-term strategy, especially when it comes to fans watching TV replays on their mobile devices.

“The video angle is the big thing for Wi-Fi,” he said. “Cellular just simply won’t be able to handle the bandwidth.”

He also pointed out that it is not in the best business interest of cellphone carriers to install Wi-Fi, as it would take customers off their networks.

Also complicating Kraft’s 2015 goal is the lack of league consensus about who will build Wi-Fi networks in all of its stadiums, and when.

By contrast, Major League Baseball named wireless-tech company Qualcomm its official technology partner in April, launching a two-year study to solve mobile-connectivity issues in its 30 stadiums. Kapustka said MLB was in a position to strike the overarching deal with Qualcomm because team owners made the league responsible for digital properties during the 1990s.

The NFL has a variety of rights deals, including Direct TV and Verizon, which make it more difficult for the league to agree on a single Wi-Fi plan, he said.

“My opinion is they (the NFL) will eventually have something more like MLB,” Kapustka said. “MLB has shown it is a great way to make money.”

Source:  CNN

AT&T uses small cells to improve service in Disney parks

Tuesday, July 23rd, 2013

AT&T will soon show off how small cell technology can improve network capacity and coverage in Walt Disney theme parks.

If you’re a Disney theme park fan and you happen to be an AT&T wireless customer, here’s some good news: Your wireless coverage within the company’s two main resorts is going to get a heck of a lot better.

AT&T and Disney Parks are announcing an agreement Tuesday that will make AT&T the official wireless provider for Walt Disney World Resort and Disneyland Resort.

What does this mean? As part of the deal, AT&T will be improving service within the Walt Disney World and Disneyland Resorts by adding small technology that will chop up AT&T’s existing licensed wireless spectrum and reuse it in smaller chunks to better cover the resort and add more capacity in high-volume areas. The company will also add free Wi-Fi hotspots, which AT&T customers visiting the resorts will also be able to use to offload data traffic.

Specifically, AT&T will add more than 25 distributed antenna systems in an effort to add capacity. It will also add more than 350 small cells, which extend the availability of the network. AT&T is adding 10 new cell sites across the Walt Disney World resort to boost coverage and capacity. And it will add nearly 50 repeaters to help improve coverage of the network.

Chris Hill, AT&T’s senior vice president for advanced solutions, said that AT&T’s efforts to improve coverage in an around Disney resorts is part of a bigger effort the company is making to add capacity and improve coverage in highly trafficked areas. He said that even though AT&T had decent network coverage already within the Disney parks, customers often experienced issues in some buildings or in remote reaches of the resorts.

“The macro cell sites can only cover so much,” he said. “So you need to go to small cells to really get everywhere you need to be and to provide the capacity you need in areas with a high density of people.”

Hill said the idea of creating smaller cell sites that reuse existing licensed spectrum is a big trend among all wireless carriers right now. And he said, AT&T is deploying this small cell technology in several cities as well as other areas where large numbers of people gather, such as stadiums and arenas.

“We are deploying this technology widely across metro areas to increase density of our coverage,” he said. “And it’s not just us. There’s a big wave of small cell deployments where tens of thousands of these access points are being deployed all over the place.”

Cooperation with Disney is a key element in this deployment since the small cell technology requires that AT&T place access points on the Disney property. The footprint of the access points is very small. They typically look like large access points used for Wi-Fi. Hill said they can be easily disguised to fit in with the surroundings.

Unfortunately, wireless customers with service from other carriers won’t see the same level of improved service. The network upgrade and the small cell deployments will only work for AT&T wireless customers. AT&T has no plans to allow other major carriers to use the network for roaming.

Also as part of the deal, AT&T will take over responsibility for Disney’s corporate wireless services, providing services to some 25,000 Disney employees. And the companies have struck various marketing and branding agreements. As part of that aspect of the deal, AT&T will become an official sponsor of Disney-created soccer and runDisney events at the ESPN Wide World of Sports Complex. In addition, Disney will join AT&T in its “It Can Wait” public service campaign, which educates the public about the dangers of texting while driving.

Source:  CNET

Corning taps into optical fiber for better indoor wireless

Monday, May 20th, 2013

Bringing wireless indoors, which was once just a matter of antennas carrying a few cellular bands so people could get phone calls, has grown far more complex and demanding in the age of Wi-Fi, multiple radio bands and more powerful antennas.

DAS (distributed antenna systems) using coaxial cable have been the main solution to the problem, but they now face some limitations. To address them, Corning will introduce a DAS at this week’s CTIA Wireless trade show in Las Vegas that uses fiber instead of coax all the way from the remote cell antennas to the base station in the heart of a building.

Cable-based DAS hasn’t kept up with the new world, according to the optical networking vendor. Though Corning is associated more often with clear glass than with thin air, it entered the indoor wireless business in 2011 by buying DAS maker MobileAccess. That’s because Corning thinks optical fiber is the key to bringing more mobile capacity and coverage inside.

The system, called Corning Optical Network Evolution (ONE) Wireless Platform, can take the place of a DAS based fully or partly on coaxial cable, according to Bill Cune, vice president of strategy for Corning MobileAccess. Corning ONE will let mobile carriers, enterprises or building owners set up a neutral-host DAS for multiple carriers using many different frequencies.

Though small cells are starting to take its place in some buildings, DAS still has advantages over the newer technology, according to analyst Peter Jarich of Current Analysis. It can be easier to upgrade because only the antennas are distributed, so more of the changes can be carried out on centralized gear. Also, small cells are typically deployed by one mobile operator, and serving customers of other carriers has to be done through roaming agreements, he said.

However, some DAS products based on coaxial cable are limited in how they can handle high frequencies and MIMO (multiple-in, multiple-out) antennas, Jarich said. Some vendors are already promoting fiber for greater flexibility and capacity, he said.

Going all fiber — up to the wireless edge, at least — will make it easier and cheaper for indoor network operators to roll out systems that can deliver all the performance users have come to expect from wireless networks, according to Corning. That includes more easily adding coverage for more carriers, as well as feeding power and data to powerful Wi-Fi systems that can supplement cellular data service, the company says.

Wireless signals don’t travel the same way inside buildings as they do outdoors, so one antenna can’t always cover the interior, regardless of whether it’s mounted in the building or on a nearby tower. A DAS consists of many antennas spaced throughout a structure, all linked to a base station in a central location. Most types of DAS use coaxial cable to carry radio signals in from the distributed antennas.

However, those copper cables get more “lossy” as the frequencies they have to carry get higher, meaning they lose a lot of their signal on the way to the base station, Corning’s Cune said. That has left coax behind as new frequencies are adopted, he said. For example, coax isn’t good at carrying the 5GHz band, which is crucial in newer Wi-Fi equipment, Cune said.

MIMO, a technology that uses multiple antennas in one unit to carry separate “streams” over the same frequency, is another big limitation of DAS, according to Corning. MIMO antennas for better performance can be found in newer Wi-Fi gear based on IEEE 802.11n and 802.11ac, as well as in LTE. A coax-based DAS with MIMO antennas needs to have a separate half-inch-wide cable for every stream, which is a major cabling challenge, Cune said.

Corning ONE links each antenna to the base station over optical fiber, converting the radio signals to optical wavelengths until they reach the base station. Fiber has more capacity than coax, can handle higher frequencies, and requires just one cable from a MIMO antenna, Cune said. Because of fiber’s high capacity, it’s relatively easy to bring other mobile operators onto the DAS.

The system is based on optical fiber, but it can be extended over standard Ethernet wiring to provide backhaul for Wi-Fi access points. Each Corning ONE remote antenna unit that’s deployed around a building will have two Ethernet ports to hook up nearby Wi-Fi access points, which can use the fiber infrastructure for data transport to wired LAN equipment, Cune said.

Corning ONE is in beta testing at one enterprise and will have limited availability beginning in late June, after which orders can be placed, Cune said. It is expected to be generally available two to three months later. The company expects its main customers to be mobile operators, though most of those operators will arrange multi-carrier services, he said. Enterprises and large building owners increasingly will step in to buy and deploy the DAS, Cune said.

Source:  networkworld.com